1. Let $f(x)=\frac{x-1}{x+1}$ for all $x \neq-1$. Then $f^{\prime}(1)$ equals?
A. -1
B. $-\frac{1}{2}$
C. 0
D. $\frac{1}{2}$
2. The value of $\lim _{x \rightarrow \pi} \frac{\sin x-\sin \pi}{x-\pi}$ is?
A. 0
B. $\frac{1}{2}$
C. -1
D. 1
3. Which of the following equals

$$
\frac{d}{d x}(\tan x+\sec x)
$$

A. $\sec x+\tan x$
B. $(\sec x)(1+\tan x)$
C. $(\sec x)(1+\sec x)$
D. $(\sec x)(\sec x+\tan x)$
D. 6.469
2. The indefinite integral below equals?

$$
\int 4 x^{3} e^{x^{4}} d x
$$

A. $e^{4 x^{3}}+C$
B. $e^{x^{4}}+C$
с. $4 x^{3} e^{x^{4}}+C$
D. None of these
4. The area of the region between the graph of $y=3 x^{2}-2 x$ and the x-axis from $x=0.75$ to $x=2.25$ is best approximated by?
A. 15.469
B. 10.688
C. 5.344
6. Find the coordinates of any points of inflection of the graph of $f(x)=x^{3}-x^{2}+\frac{1}{3}$.
7. Determine the domain of the function below.

$$
f(x)=\frac{\sqrt{x-5}}{x}
$$

9. Evaluate:

$$
\lim _{n \rightarrow \infty}
$$

8. Find y^{\prime} given:

$$
y=\left(x^{3}+1\right)^{15} \cos \left(x^{2}-3\right)
$$

10. Find y^{\prime} given:

$$
y=e^{\tan x}+1
$$

11. Suppose g is a function such that $g^{\prime}(1)=0$, $g^{\prime}(x)>0$ when x lies in the interval $(-1,1)$ and $g^{\prime}(x)<0$ when x lies in the interval $(1,3)$.
Sketch the graph of g for values of x near $\mathrm{x}=1$. Indicate any special characteristics of g at $\mathrm{x}=1$.
12. Let $y=\cos \left(\cos ^{2} x\right)$. Find $\frac{d y}{d x}$.

Name:
13. The area of the region bounded by the graphs of $f(x)=2-x^{2}$ and $g(x)=x$ is?
A. $\frac{9}{2}$
B. $\frac{27}{16}$
C. $\frac{1}{2}$
D. $\frac{11}{2}$
14. Approximate the area of the region bounded by the graph of $y=x e^{-x}$ and the x-axis over the interval is $[-0.7,2.4]$.
15. Which of the following properties of the definite integral is/are true?
I. $\int_{a}^{b} x f(x) d x=x \int_{a}^{b} f(x) d x$
II. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$
III. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ where \boldsymbol{k} is a constant
A. III only
C. II and III
B. I only
D. I, II, and III
17. Approximate the slope of the line tangent to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at the point $\left(1,-\frac{8 \sqrt{2}}{3}\right)$.
18. Integrate:
$\int x^{2} e^{x^{3}} d x$
А. $\frac{1}{3} e^{x^{3}}+C$
B. $3 e^{x^{3}}+C$
c. $\frac{1}{3}\left(x^{3}+e^{x^{3}}+C\right)$
D. $e^{x^{3}}\left(3 x^{4}+2 x\right)+C$
19. Let $g(x)=x^{3}+6 x+10$.
a) State the interval(s) over which g is increasing.
b) State the interval(s) over which g is concave down.
20. The graph of the derivative of f is shown below. Sketch the graph of f.

FreedomProject Academy

Calculus II Placement Test

Print, Complete Showing ALL Work
(Calculators Permitted)
Scan and Email to tests@fpeusa.org

